Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
iScience ; 25(11): 105337, 2022 Nov 18.
Article in English | MEDLINE | ID: covidwho-2122548

ABSTRACT

Contact tracing and genomic data, approaches often used separately, have both been important tools in understanding the nature of SARS-CoV-2 transmission. Linked analysis of contact tracing and sequence relatedness of SARS-CoV-2 genomes from a regularly sampled university environment were used to build a multilevel transmission tracing and confirmation system to monitor and understand transmission on campus. Our investigation of an 18-person cluster stemming from an athletic team highlighted the importance of linking contact tracing and genomic analysis. Through these findings, it is suggestive that certain safety protocols in the athletic practice setting reduced transmission. The linking of traditional contact tracing with rapid-return genomic information is an effective approach for differentiating between multiple plausible transmission scenarios and informing subsequent public health protocols to limit disease spread in a university environment.

2.
iScience ; 2022.
Article in English | EuropePMC | ID: covidwho-2058577

ABSTRACT

Contact tracing and genomic data, approaches often used separately, have both been important tools in understanding the nature of SARS-CoV-2 transmission. Linked analysis of contact tracing and sequence relatedness of SARS-CoV-2 genomes from a regularly sampled university environment were used to build a multilevel transmission tracing and confirmation system to monitor and understand transmission on campus. Our investigation of an 18-person cluster stemming from an athletic team highlighted the importance of linking contact tracing and genomic analysis. Through these findings, it is suggestive that certain safety protocols in the athletic practice setting reduced transmission. The linking of traditional contact tracing with rapid-return genomic information is an effective approach for differentiating between multiple plausible transmission scenarios and informing subsequent public health protocols to limit disease spread in a university environment. Graphical

3.
JAMA Netw Open ; 5(8): e2225430, 2022 08 01.
Article in English | MEDLINE | ID: covidwho-1981504

ABSTRACT

Importance: SARS-CoV-2, the causative agent of COVID-19, has displayed person-to-person transmission in a variety of indoor situations. This potential for robust transmission has posed significant challenges and concerns for day-to-day activities of colleges and universities where indoor learning is a focus for students, faculty, and staff. Objective: To assess whether in-class instruction without any physical distancing, but with other public health mitigation strategies, is a risk for driving SARS-CoV-2 transmission. Design, Setting, and Participants: This cohort study examined the evidence for SARS-CoV-2 transmission on a large urban US university campus using contact tracing, class attendance, and whole genome sequencing during the 2021 fall semester. Eligible participants were on-campus and off-campus individuals involved in campus activities. Data were analyzed between September and December 2021. Exposures: Participation in class and work activities on a campus with mandated vaccination and indoor masking but that was otherwise fully open without physical distancing during a time of ongoing transmission of SARS-CoV-2, both at the university and in the surrounding counties. Main Outcomes and Measures: Likelihood of in-class infection was assessed by measuring the genetic distance between all potential in-class transmission pairings using polymerase chain reaction testing. Results: More than 600 000 polymerase chain reaction tests were conducted throughout the semester, with 896 tests (0.1%) showing detectable SARS-CoV-2; there were over 850 cases of SARS-CoV-2 infection identified through weekly surveillance testing of all students and faculty on campus during the fall 2021 semester. The rolling mean average of positive tests ranged between 4 and 27 daily cases. Of more than 140 000 in-person class events and a total student population of 33 000 between graduate and undergraduate students, only 9 instances of potential in-class transmission were identified, accounting for 0.0045% of all classroom meetings. Conclusions and Relevance: In this cohort study, the data suggested that under robust transmission abatement strategies, in-class instruction was not an appreciable source of disease transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Cohort Studies , Genomics , Humans , Public Health , SARS-CoV-2/genetics , Universities
4.
Cell Rep Methods ; 1(1): 100005, 2021 May 24.
Article in English | MEDLINE | ID: covidwho-1169147

ABSTRACT

Asymptomatic surveillance testing together with COVID-19-related research can lead to positive SARS-CoV-2 tests resulting not from true infections, but non-infectious, non-hazardous by-products of research (amplicons). Amplicons can be widespread and persistent in lab environments and can be difficult to distinguish for true infections. We discuss prevention and mitigation strategies.

SELECTION OF CITATIONS
SEARCH DETAIL